鋰離子電池安全性問題是個復雜的綜合性問題。電池安全性最大的隱患是電池隨機發生的內短路,產生現場失效,引發熱失控。所以開發和使用熱穩定性高的材料是將來改善鋰離子電池安全性能的根本途徑和努力的方向。
...
鋰離子電池安全性問題是個復雜的綜合性問題。電池安全性最大的隱患是電池隨機發生的內短路,產生現場失效,引發熱失控。所以開發和使用熱穩定性高的材料是將來改善鋰離子電池安全性能的根本途徑和努力的方向。
提高電池材料的熱穩定性
正極材料可以通過優化合成條件 ,改進合成方法 ,合成熱穩定性好的材料 ;或使用復合技術(如摻雜技術)、表面包覆技術(如涂層技術)來改善正極材料的熱穩定性。
負極材料的熱穩定性與負極材料的種類、材料顆粒的大小以及負極所形成的SEI膜的穩定性有關。如將大小顆粒按一定配比制成負極即可達到擴大顆粒之間接觸面積,降低電極阻抗,增加電極容量,減小活性金屬鋰析出可能性的目的。
SEI 膜形成的質量直接影響鋰離子電池的充放電性能與安全性,將碳材料表面弱氧化,或經還原,摻雜,表面改性的碳材料以及使用球形或纖維狀的碳材料有助于SEI膜質量的提高。
電解液的穩定性與鋰鹽、溶劑的種類有關。采用熱穩定性好的鋰鹽,電位穩定窗口寬的溶劑可以提高電池的熱穩定性。在電解液中添加一些高沸點、高閃點和不易燃的溶劑可以改善電池的安全性。
導電劑與粘結劑的種類與數量也影響著電池的熱穩定性,粘結劑與鋰在高溫下反應產生大量的熱 ,不同粘結劑發熱量不同 , PVDF 的發熱量幾乎是無氟粘結劑的2倍 ,用無氟粘結劑代替PVDF可以提高電池的熱穩定性。
提高電池過充保護能力
為防止鋰離子電池過充 ,通常采用專用的充電電路來控制電池的充放電過程 ,或者在單個電池上安裝安全閥以提供更大程度的過充保護;其次也可采用正溫度系數電阻器(PTC),其作用機理為當電池因過充而升溫時,增大電池的內阻 ,從而限制過充電流 ;還可采用專用的隔膜 ,當電池發生異常引起隔膜溫度過高時 ,隔膜孔隙收縮閉塞 ,阻止鋰離子的遷移 ,防止電池的過充。
防止電池的短路
對于隔膜而言而言,孔率為40%左右,且分布均勻,孔徑為10nm的隔膜能阻止正負極小顆粒運動,從而提高鋰離子電池的安全性; 隔膜的絕緣電壓與其防止正負極的接觸有著直接的關系 ,隔膜的絕緣電壓依賴于隔膜的材質、結構以及電池的裝配條件。
采用熱閉合溫度和熔融溫度差值比較大的復合隔膜 (如PP/PE/PP)可防止電池熱失控。將隔膜表面涂覆陶瓷層提高隔膜耐溫性。利用低熔點的PE(125℃) 在溫度較低的條件下起到閉孔作用, PP(155℃) 又能保持隔膜的形狀和機械強度 ,防止正負極接觸 ,保證電池的安全性。
大家都知道以石墨負極替代金屬鋰負極,從而使充放電過程中鋰在負極表面的沉積和溶解變為鋰在碳顆粒中的嵌入和脫出,防止了鋰枝晶的形成。但這并不代表鋰離子電池的安全性已經解決,在鋰離子電池充電過程 ,如果正極容量過多,就會出現金屬鋰在負極表面沉積,負極容量過多,電池容量損失較嚴重。
涂布厚度及其均一性也影響鋰離子在活性物質中的嵌入和脫出。例如負極面密度較厚不均一, 因此充電過程中各處極化大小不同, 就有可能發生金屬鋰在負極表面局部沉積。
此外,使用條件不當也會引起電池的短路,低溫條件下,由于鋰離子的沉積速度大于嵌入速度,從而導致金屬鋰沉積在電極表面引起短路。因此,控制好正負極材料的比例,增強涂布的均勻性等是防止鋰枝晶形成的關鍵。
此外,粘結劑的晶化、銅枝晶的形成也會造成電池內部短路。在涂布工藝中,通過涂布烘烤加熱將漿料中溶劑全部除去,若加熱溫度過高,則粘結劑也有可能發生晶化,會使活性物質剝落,使電池內部短路。
在過放條件下,當電池過放至1-2V時,作為負極集電體的銅箔將開始溶解,并于正極上析出,小于1V時正極表面則開始出現銅枝晶,使鋰離子電池內部短路。
以上就是防止鋰電池爆炸的措施,普納斯能源優勢產品:高溫鋰電池、低溫鋰電池、高壓鋰電池、鋰電池組,并廣泛應用在戶外照明、醫療設備、儀器儀表等產品;公司配有充放電設計、產品選型等鋰電技術服務,歡迎您的咨詢!